William H. Gates Hall

University of Washington School of Law

Katie Jenkins

The Pennsylvania State University
Architectural Engineering
Lighting/Electrical Option
Senior Thesis – Spring 2007
Advisors: Dr. Mistrick & Ted Dannerth

Building Name: William H. Gates Hall

Location: Seattle, WA

Owner: University of Washington,

School of Law

Size: 196,000 square feet

6 floors (2 below grade)

Building Cost: \$82.7 million

Architect: Mahlum Architects

- Law Library
- Mock Courtrooms
- Classrooms
- Seminar Rooms
- Administrative Offices
- Computer Laboratories
- Conference Rooms
- Law Office Clinic

Presentation Outline

- Lighting Depth
 - Library
 - Galleria
 - Terrace
 - Courtroom

- Electrical Depth
 - Transformer Redesign (Central vs. Distributed Transformers)
- Sustainability Breadth
 - Feasibility Study of Rainwater Catchment System to Supply Cooling Tower Water Makeup
- Construction Management Breadth
 - Cost Analysis of Rainwater Catchment System
- Conclusions

Lighting Depth

Marion Gould Gallagher Law Library

Location: 2 levels below grade

Level L1 & L2

Functions: Reading Area

Stacks

Computer stations

Key Features

- Skylights
- Double height central area
- Reading Area
- Stacks

Design Goals

- Create an interesting, but not distracting, space
- Provide adequate light levels for visual tasks
- Integrate Skylights

Target Illuminance Levels

- Horizontal (Work Plane): 30 fc
- Vertical (Stacks): 20-30fc

Power Density

• ASHRAE/IESNA 90.1 – 1.9 W/ft²

Custom Fixture

- Below Each Skylight
- Aluminum Tubing Structure
- (6) Asymmetrical Uplights
- (8) Pendants
 - Suspended at two different lengths

William H. Gates Hall - Seattle, WA

Lighting Depth - Law Library

Design Illuminance Values (avg)

Horizontal: Reading Tables: 51 fc

Cubicles: 32 fc

Computer Stations: 35 fc

Vertical: Stacks: 23 fc

Meets Target Illuminance Levels

Design Power Density

Total Watts: 12,844 W

Area: 25,000 ft²

Power Density: 0.51 W/ft²

Meets Power Density Requirements

Central vs. Distributed Transformers

Design Goals:

- Change from Central Transformers to Distributed Transformers
- Decrease Wire Size Running Through Building
- Decrease System Cost

Existing Transformers:

TRANSFORMER SCHEDULE										
TAG	PRIMARY VOLTAGE	SECONDARY VOLTAGE	SIZE	TYPE	TEMP. RISE	MOUNTING	REMARKS			
TR-NWB2-N01	13.8 KV,3PH,3W	480Y/277V,3PH,4W	2500	DRY TYPE	150 DEGREE C	PAD MOUNTED ON	K-4 RATED			
TR-NWB2-N02	480V,3PH,3W.	208Y/120V,3PH,4W	500	DRY TYPE	150 DEGREE C	PAD MOUNTED ON FLOOR	K-13 RATED			
TR-NWB2-N03	480V,3PH,3W.	208Y/120V,3PH,4W	500	DRY TYPE	150 DEGREE C	PAD MOUNTED ON FLOOR	K-13 RATED			
TR-NWB2-N04	480V,3PH,3W.	208Y/120V,3PH,4W	225	DRY TYPE	150 DEGREE C	PAD MOUNTED ON FLOOR	K-13 RATED			
TR-NWB2-N05	480V,3PH,3W.	208Y/120V,3PH,4W	225	DRY TYPE	150 DEGREE C	PAD MOUNTED ON FLOOR	K-13 RATED			
TR-NWB2-N06	480V,3PH,3W.	208Y/120V,3PH,4W	45	DRY TYPE	150 DEGREE C	PAD MOUNTED ON FLOOR	K-13 RATED			
TR-SW01-N01	480V,3PH,3W.	208Y/120V,3PH,4W	112.5	DRY TYPE	150 DEGREE C	PAD MOUNTED ON FLOOR	K-13 RATED			
TR-NE04-N06	480V,3PH,3W.	208Y/120V,3PH,4W	75	DRY TYPE	150 DEGREE C	PAD MOUNTED ON FLOOR	K-13 RATED			

225 KVA Transformer

500 KVA Transformer

225 KVA Transformer

500 KVA Transformer

Distributed Transformers

- Panelboards in Same Closet or on Adjacent Floors Grouped Together
- 14 Total
- Range from 45 KVA to 150 KVA

			EXIST	TING SYS	STEM								PROPO	OSED SYS	STEM				
TRANSFO	RMFRS				, . <u></u>					TRANSFOR	RMFRS		111010	JOLD OIL	O I LIVI				
480-208/120V, 3 PH, 4W - K-13 RATED, VENTILATED 480-208/120V, 3 PH, 4W - K-13 RATED, VENTILATED																			
SIZE	COST (INCL.			ITS	QUANT	ITV	TOT !	L COST		SIZE	COST (IN		UN		QUAN	ITITY	TOT	AL COST	
O.LL		,		-	QUANT	117				45 KVA	\$4,3		E,	A.	3			12,900	
225 KVA	\$18,100		E	A.	2		\$3	6,200		75 KVA	\$5,7		E,		4			23,000	
500 KVA	\$37,200)		IID.	TOI			411	0 600	112.5 KVA	\$10,				5			52 500	
TD ANGEC	RMER PRO	TECTI	ON	SUB			_	ÐΙΙ	0,600	150 KVA	\$12,	500		CI IE	3TO	ТЛ		C1	12 ///
	D CIRCIT B			۸.1						TDANSFOR	RMER PROTE	CTION			טוכ	' 🖰		ΨI	13,400
						-			_		CIRCIT BRI		NEMA 1						
SIZE	COST (INCL.	O&P)	UN	ITS	QUANT	TTY	TOTA	L COST		SIZE	COST (INC	-,	UN	ITC	QUAN	ITITV	Тот	AL COST	
600A	\$3,900		Е	A.	2		\$	7,800		100A			E/		QUAN 1			\$755	
					SUBTO	TAL	\$	7,800		225A	\$75 \$1.5		E/					18.900	
SWITCHG	EAR BREAM	(ERS													12			-,	
SIZE	COST (INCL.	0&P)	UN	ITS	QUANT	TTY	TOTA	L COST		400A	\$2,7	50	E,	A.	6			16,500	
400A	\$3,775		E	Δ	2		¢.	7,550		CMITCHO	AD DDE 41/5	DC.			SUBTO	UIAL	\$	36,155	
800A	\$5,775				2			1,800		SIZE	AR BREAKE		I UN	ITC	QUAN	ITITV	TOT	AL COST	
00071	ψ0,000				SUBTO	TAL		9,350		225A	285 285		UN E/		QUAN	11111		AL COST \$2.850	
MOLDED	CASE CIRC	UIT BR	EAKERS							400A	\$3,7		E,		1			\$3,775	
SIZE	COST (INCL.	0&P)	UN	ITS	QUANT	TTY		L COST		600A	\$4,6		E,		1			\$4,650	
400A	\$3,775		E		1			3,775		800A	\$5,9	00	E,	A.	1			\$5,900	
600A	\$4,650		E	A.	5 CUDTO	TA1		3,250							SUBT	OTAL	\$	17,175	
DISTRIBU	JTION PANE	1			SUBTO	IAL	\$2	7,025			ASE CIRCUI								
						-				SIZE	COST (INC		UN	-	QUAN	ITITY		AL COST	
SIZE	COST (INCL.	O&P)	UN	ITS	QUANT	TTY	TOTA	L COST		400A	\$3,7	75	E	A.	SUBT(OTAL		\$7,550 \$7.550	
1600A	\$4,850		Е	Α.	2		\$	9,700		DISTRIBUT	ION PANEL				SUBIC	UTAL	- 3	pr,500	
					SUBTO	TAL	\$	9,700		SIZE	COST (INC	CL O&PI	UN	ITS	QUAN	ITITY	TOT	AL COST	
PANELBO										400A	\$2,5		E/		2			\$5,100	
SIZE	COST (INCL.			ITS	QUANT	TTY		L COST		700/1	ΨΖ,υ				SUBTO			\$5,100	
225A	\$2,025		E		23			6,575		PANELBO A	ARDS				UUDIN			,.,	
400A	\$3,025		Е	A.	9 SUBTO	ΤΔΙ		7,225 3,800		SIZE	COST (IN	CL. O&P)	UN	ITS	QUAN	ITITY	ТОТ	AL COST	
FEEDER	& CONDUIT				30010	IAL	\$1	5,000		225A	\$2,0		E/		23			46,575	
FEEDER		NO.			COST	 	LENGTH	TOTAL		400A	\$3,0	125	E,	A.	9			27,225	
DESIG.	WIRE	SETS	QUANTITY	SIZE	(INCL. O&P)	UNITS	(L.F.)	COST							SUBT	OTAL	\$	73,800	
	PHASE		3	4/0	\$420.00	C.L.F.	595	\$7,497.00		FEEDER &	CONDUIT								
225Y	NEUTRAL	↓ ₁ [1	4/0	\$420.00	C.L.F.	595	\$2,499.00		FEEDER	WIRE	NO. SETS	QUANTITY	SIZE	COST (INCL	UNITS	LENGTH	TOTAL	
	GROUND	↓	1	4	\$136.00 \$17.60	C.L.F.	595	\$809.20		DESIG.	WIKE	NO. 3E13	QUANTITY	SIZE	O&P)	UNITS	(L.F.)	COST	
	PHASE	\vdash	3	2-1/2" 500 KCMIL	\$17.60	L.F. C.L.F.	595 20	\$10,472.00 \$459.00			PHASE		3	1	\$209.00	C.L.F.	10	\$62.70	
	NEUTRAL	† . I	1	500 KCMIL	\$765.00	C.L.F.	20	\$153.00		100Y	NEUTRAL] 1	11	1	\$209.00	C.L.F.	10	\$20.90	
350Y	GROUND	† 1 	1	2	\$178.00	C.L.F.	20	\$35.60		1001	GROUND	1 '	1	8	\$78.00	C.L.F.	10	\$7.80	
	CONDUIT		1	3"	\$22.50	L.F.	20	\$450.00			CONDUIT	 	3	2" 4/0	\$11.15	L.F. C.L.F.	10	\$111.50	
	PHASE	ļ ļ	3	3/0	\$355.00	C.L.F.	324	\$6,901.20			PHASE NEUTRAL	1	1	4/0	\$420.00 \$420.00	C.L.F.	892 892	\$11,239.20 \$3,746.40	
400Y	NEUTRAL GROUND	2	1	3/0 2	\$355.00 \$178.00	C.L.F.	324 324	\$2,300.40 \$1,153.44		225Y	GROUND	1	1	4/0	\$136.00	C.L.F.	892	\$1,213.12	
1	CONDUIT	 	1	2-1/2"	\$178.00	L.F.	324	\$5,702.40			CONDUIT	1	1	2-1/2"	\$17.60	L.F.	892	\$15,699.20	
	PHASE		3	350 KCMIL	\$595.00	C.L.F.	980	\$34,986.00			PHASE		3	3/0	\$355.00	C.L.F.	404	\$8,605.20	
600Y	NEUTRAL	2	1	350 KCMIL	\$595.00	C.L.F.	980	\$11,662.00		400Y	NEUTRAL	2	1	3/0	\$355.00	C.L.F.	404	\$2,868.40	
0001	GROUND]	1	1	\$209.00	C.L.F.	980	\$4,096.40		,001	GROUND	,	1	2	\$178.00	C.L.F.	404	\$1,438.24	
	CONDUIT	igsquare	1	3"	\$22.50	L.F.	980	\$22,050.00			CONDUIT	 	1	2-1/2" 350 KCMIL	\$17.60	L.F.	404	\$7,110.40	
	PHASE	↓	3	300 KCMIL 300 KCMIL	\$535.00	C.L.F.	20	\$963.00			PHASE NEUTRAL	-	3	350 KCMIL	\$595.00 \$595.00	C.L.F.	206 206	\$7,354.20 \$2,451.40	
800Y	NEUTRAL GROUND	3	1	300 KCMIL 1/0	\$535.00 \$250.00	C.L.F.	20	\$321.00 \$150.00		600Y	GROUND	2	1	1	\$209.00	C.L.F.	206	\$861.08	
	CONDUIT	†	1	3"	\$230.00	L.F.	20	\$450.00			CONDUIT	1	1	3"	\$22.50	L.F.	206	\$4,635.00	
	PHASE	\vdash	3	500 KCMIL	\$765.00	C.L.F.	10	\$1,147.50			PHASE	1	3	300 KCMIL	\$535.00	C.L.F.	180	\$8,667.00	
1600Y	NEUTRAL	5	_ 1	500 KCMIL	\$765.00	C.L.F.	10	\$382.50		800Y	NEUTRAL	3	1	300 KCMIL	\$535.00	C.L.F.	180	\$2,889.00	
10001	GROUND]	CI	IDT	OT4		44	15	125.64	0001	GROUND	, i	CL	IDT	OT	A I	4	044	77.84
	CONDUIT		∣SL	JBT	كسك		7.	17	143 D4		CONDUIT		SU	IB I	$\mathbf{Q}\mathbf{I}$	4			
\$000 400 04 B						26	2	100	GA -							42	27	2E.	7 0 1
	EVIC	TING	SYSTE	EM TOTA	\	SD.	.5 4	LUJU	04		PR	ROPOSE	D SYSTE	-M TOTA	L	-M-5	5/	57	/ X4
	EVIO	1 1110			_ ~	\mathbf{q}									_	\mathbf{w}	J.		I JUT I

Proposed System Savings = \$26,042.80

System Recommended

A Feasibility Study of Implementing a Rainwater Catchment System to Offset Cooling Tower Water Makeup

Rainwater Catchment System Design Goals

- Utilize Seattle's Rainy Climate
- Offset Building Non-Potable Water Demands
- Increase the University's Commitment to Sustainability

Makeup Water Requirements

Cooling Towers

- (2) Cooling Towers
- 825 GPM each

Makeup Water per Cooling Tower

• Evaporation: 6.82 GPM

• Drift: 0.0165 GPM

• Blowdown: 0.98 GPM

• Total Makeup Water = 7.82 GPM

Month	Makeup Water Needed (GPM)	Days A Month	Makeup Water per Cooling Tower (Gallons)	Total Makeup Water (2 Cooling Towers)
January	8	31	357,120	714,240
February	8	28	322,560	645,120
March	8	31	357,120	714,240
April	8	30	345,600	691,200
May	8	31	357,120	714,240
June	8	30	345,600	691,200
July	8	31	357,120	714,240
August	8	31	357,120	714,240
September	8	30	345,600	691,200
October	8	31	357,120	714,240
November	8	30	345,600	691,200
December	8	31	357,120	714.240
		Total	4,204,800	8,409,600

8 GPM per Cooling Tower

Collectible Water

Month	Monthly Rainfall (Inches)	Roof Surface Area (Sq. Ft.)	Monthly Catchment (Gallons)	
January	5.4	48,500	157,140	
February	4	48,500	116,400	
March	3.8	48,500	110,580	
April	2.5	48,500	72,750	
May	1.8	48,500	52,380	
June	1.6	48,500	46,560	
July	0.9	48,500	26,190	
August	1.2	48,500	34,920	
September	1.9	48,500	55,290	
October	3.3	48,500	96,030	
November	5.7	48,500	165,870	
December	6	48,500	174,600	
		Total	1,108,710	

Potential to Offset Cooling Tower Makeup Water

Month	Water Catchment (Gallons)	Makeup Water Required (Gallons)	Makeup Water Demand After Rainwater	Percentage of Water Use Offset
January	157,140	714,240	557,100	22.0%
February	116,400	645,120	528,720	18.0%
March	110,580	714,240	603,660	15.5%
April	72,750	691,200	618,450	10.5%
May	52,380	714,240	661,860	7.3%
June	46,560	691,200	644,640	6.7%
July	26,190	714,240	688,050	3.7%
August	34,920	714,240	679,320	4.9%
September	55,290	691,200	635,910	8.0%
October	96,030	714,240	618,210	13.4%
November	165,870	691,200	525,330	24.0%
December	174,600	714,240	539,640	24.4%

System Components & Considerations

- Water Storage
 - Fiberglass Cistern
 - 10,000 gallons
 - 12' diameter, 12' height
- Pump
- Filtration & Water Treatment
- Additional Water Supply

Cooling Tower Pit Expansion

Cost Analysis of Rainwater Catchment System

Proposed System First Cost							
Ra	ainwater Catchme	ent System					
Component	Quantity	Unit Cost	Cost				
Cistern - 10,000 gal	1	\$10,000.00	\$10,000.00				
First Flush Diverter	1	\$137.46	\$137.46				
PVC Piping - 2"	40 L.F.	\$3.30	\$132.00				
		Subtotal	\$10,269.46				
Cooling Tower Pit Addition							
Component	Size	Unit Cost	Cost				
Excavation	192.6 C.Y.	\$11.40	\$2,195.64				
Slab On Grade	260 S.F.	\$6.05	\$1,573.00				
Foundation Walls	51.1 C.Y.	\$325.00	\$16,607.50				
(Including Formwork, Concrete, Reinforcement & Finishing)							
		Subtotal	\$20,376.14				
Tota	\$30,645.60						

Total Water Cost using 100% Supply Water

Month	Makeup Water (Gallons)	Cost per 100 gallons	Cost per Month
January	714,240	\$0.43	\$3,071.23
February	645,120	\$0.43	\$2,774.02
March	714,240	\$0.43	\$3,071.23
April	691,200	\$0.43	\$2,972.16
May	714,240	\$0.43	\$3,071.23
June	691,200	\$0.43	\$2,972.16
July	714,240	\$0.43	\$3,071.23
August	714,240	\$0.43	\$3,071.23
September	691,200	\$0.43	\$2,972.16
October	714,240	\$0.43	\$3,071.23
November	691,200	\$0.43	\$2,972.16
December	714,240	\$0.43	\$3,071.23

Total Yearly Makeup Water

\$36,161.28

Total Water Cost After Rainwater Contribution

Month	Makeup Water (Gallons)	Cost per 100 gallons	Cost per Month
January	557,100	\$0.43	\$2,395.53
February	528,720	\$0.43	\$2,273.50
March	603,660	\$0.43	\$2,595.74
April	618,450	\$0.43	\$2,659.34
May	661,860	\$0.43	\$2,846.00
June	644,640	\$0.43	\$2,771.95
July	688,050	\$0.43	\$2,958.62
August	679,320	\$0.43	\$2,921.08
September	635,910	\$0.43	\$2,734.41
October	618,210	\$0.43	\$2,658.30
November	525,330	\$0.43	\$2,258.92
December	539,640	\$0. <u>43</u>	\$2,320.45

Total Yearly Makeup Water C

\$31,393.83

Yearly Water Cost Savings = \$4,767.45

Payback Period of 6.5 Years
System Life of 25 Years

- Meets Design Goals
- Meets Target Illuminance Levels
- Meets Power Density Requirements

Electrical Depth – Transformer Redesign

- Changed from Central to Distributed Transformers
- Decreased Wire Sizes
- Decreased System Cost by Approximately \$26,000

Sustainability Breadth - Rainwater Catchment System

- Able to Collect 1.1 Million Gallons of Water per Year
- Potentially Monthly Water Savings of up to 25%

Construction Management Breadth – Cost Analysis

- Yearly Water Cost Savings of \$4,767
- Payback of 6.5 Years

Special Thanks to:

Hargis Engineers
Mahlum Architects
University of Washington
Capital Projects

AE Faculty & Staff

AE Classmates

Friends & Family

